Marius Franke

Bachelorarbeit
im Fach Wirtschaftsinformatik

Methoden zur Sicherstellung der Daten- und Informationsqualität bei der Implementierung und dem Betrieb von Enterprise Resource Planning-Systemen in serviceorientierten Unternehmen

Themensteller: Jun.-Prof. Dr. Ali Sunyaev

Vorgelegt in der Bachelorprüfung
im Studiengang Wirtschaftsinformatik
der Wirtschafts- und Sozialwissenschaftlichen Fakultät
der Universität zu Köln

Köln, September 2011
Inhaltsverzeichnis

Abkürzungsverzeichnis .. IV
Abbildungsverzeichnis ... V
Tabellenverzeichnis .. VI

1. Einführung .. 1
 1.1. Abstract ... 1
 1.2. Einleitung .. 2

2. Methodik und Aufbau ... 5
 2.1. Methodik .. 5
 2.2. Aufbau ... 7

3. Begriffsdefinitionen .. 9
 3.1. Daten und Informationen .. 9
 3.2. Enterprise Resource Planning (ERP)-System .. 9
 3.3. Serviceorientierte Unternehmen ... 10

4. Das Konzept der Daten- und Informationsqualität ... 11
 4.1. Einleitung .. 11
 4.2. Modelle der DIQ ... 12
 4.2.1. Der ontologische Ansatz .. 12
 4.2.2. ’Fitness for use‘-Konzept ... 13
 4.2.3. Information als Informationsprodukt ... 14
 4.3. Definition der Qualitätsdimensionen ... 15
 4.4. Problembereiche in Bezug auf die DIQ .. 17
 4.4.1. Problemfaktor Prozess ... 18
 4.4.2. Problemfaktor Technologie/Informationssystem 19
 4.4.3. Problemfaktor Mensch ... 20
 4.4.4. Zusammenfassung .. 21

5. Enterprise Resource Planning-Systeme .. 22
 5.1. Einleitung .. 22
 5.2. Spezifische Eigenschaften eines ERP-Systems ... 23
 5.2.1. Integrierte Datenhaltung .. 23
 5.2.2. Vorkonfiguration ... 24
 5.2.3. Systemarchitektur ... 24
 5.3. Daten und Informationen im ERP-Kontext ... 25
 5.3.1. Die Relevanz der Daten- und Informationsqualität im ERP-Kontext 25
5.3.2. Datenverarbeitung in ERP-Systemen ... 27
5.4. Der ERP-Lebenszyklus .. 29
 5.4.1. Entscheidungsfindung und Erwerb ... 30
 5.4.2. Implementierung ... 31
 5.4.3. Betrieb, Wartung und Entwicklung .. 32
 5.4.4. Stilllegung ... 33
5.5. Zusammenfassung ... 33

6. Serviceorientierte Unternehmen ... 34
 6.1. Charakteristika von Dienstleistungsunternehmen im Vergleich zu
 Fertigungsunternehmen ... 34
 6.1.1. Immaterialität / Intangibilität des Produktes ... 34
 6.1.2. Kundenkontakt / Kundenspezifische Anforderungen 35
 6.1.3. Gleichzeitige Produktion und Konsumierung – „uno actu“-Prinzip 35
 6.2. Zusammenfassung ... 36

7. Methodenevaluation .. 37
 7.1. Begriffsdefinition: „Methode“ .. 37
 7.2. Evaluationskriterien ... 37
 7.2.1. Datengetriebene vs. Prozessgetriebene Strategien ... 38
 7.2.2. Bewertung vs. Optimierung .. 40
 7.2.3. Generelle Anwendbarkeit vs. spezifische Anwendbarkeit 40
 7.2.4. Qualitätsdimensionen und metrische Systeme ... 40
 7.2.5. Proaktiver vs. reaktiver Ansatz ... 41
 7.3. Methoden ... 42
 7.3.1. Total Data Quality Management (TDQM) ... 42
 7.3.2. Total Information Quality Management (TIQM) ... 47
 7.3.3. AIMQ .. 49
 7.3.4. Complete Data Quality Methodology (CDQM) ... 51

8. Fazit ... 53

Literaturverzeichnis ... 55
Erklärung ... 62
Lebenslauf ... 63
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPR</td>
<td>Business Process Reengineering</td>
</tr>
<tr>
<td>CDQM</td>
<td>Complete Data Quality Methodology</td>
</tr>
<tr>
<td>DGIQ</td>
<td>Deutsche Gesellschaft für Daten- und Informationsqualität e. V.</td>
</tr>
<tr>
<td>DIQ</td>
<td>Daten- und Informationsqualität</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IP</td>
<td>Informationsprodukt</td>
</tr>
<tr>
<td>IPM</td>
<td>Information Product Manager</td>
</tr>
<tr>
<td>IS</td>
<td>Informationssystem</td>
</tr>
<tr>
<td>RW</td>
<td>Reale Welt</td>
</tr>
<tr>
<td>TDQM</td>
<td>Total Data Quality Management</td>
</tr>
<tr>
<td>TQdM</td>
<td>Total Quality data Management</td>
</tr>
<tr>
<td>TIQM</td>
<td>Total Information Quality Management</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 2-1: Übersicht über die Methodik ... 5
Abb. 4-1: Modell der Qualitätsdimensionen ... 16
Abb. 5-1: Die Phasen des ERP-Lebenszyklus .. 29
Abb. 7-1: Der TDQM-Kreislauf .. 44
Abb. 7-2: Die sechs Prozesse des TIQM .. 48
Tabellenverzeichnis
Tab. 4-1: Literaturübersicht der Qualitätsdimensionen .. 17
Tab. 6-1: Grad der Kundenbeteiligung am Dienstleistungsprozess 35
Tab. 7-1: Vergleich: Daten- und prozessgetriebene Strategien 39
1. Einführung

1.1. Abstract

Aufgrund der zunehmenden Bedeutung der DIQ haben Forscher in den letzten Jahren eine Reihe von Publikationen veröffentlicht, die sich wesentlich mit der Thematik der Methoden zur Bewertung und Optimierung der DIQ befassen. Im Zentrum der vorliegenden Arbeit stehen Methoden, die zur Herstellung und Gewährleistung der DIQ bei der Implementierung und dem Betrieb eines ERP-Systems in Dienstleistungsunternehmen eingesetzt werden können. Die Besonderheit liegt darin, dass die Methoden auf die Anwendbarkeit in diesem speziellen Kontext hin untersucht werden. Eine Methode stellt in dieser Arbeit ein Grundgerüst dar, welches zum einen Richtlinien, Strategien und Techniken umfasst und zum anderen die planmäßige, systematische Anwendung dieser beschreibt.

Übersicht kann Dienstleistungsunternehmen bei der Auswahl der optimalen Methode unterstützen und die Risiken und Kosten fehlgeschlagener Ansätze minimieren. Dadurch können die negativen Auswirkungen einer mangelhaften DIQ vermieden und die Effizienz der betrieblichen Prozesse gesteigert werden.

1.2. Einleitung

Besondere Relevanz spielt die DIQ innerhalb der Implementierung und dem Betrieb von ERP-Systemen, da viele ERP-Implementierungsprojekte von Problemen aufgrund einer mangelhaften DIQ betroffen sind.

Unternehmen die DIQ in diesem Umfeld herstellen und fortlauend gewährleisten können.

Damit Unternehmen unnötige Kosten durch eine mangelhafte DIQ vermeiden und das Potential des ERP-Systems vollständig ausschöpfen können, müssen diese Unternehmen zum einen ihre Anforderungen an die DIQ kennen und zum anderen Methoden einsetzen, die die Qualität der Daten und Informationen sicherstellen.

2. Methodik und Aufbau

2.1. Methodik

Um die Zielsetzung meiner Bachelorarbeit zu erreichen, werde ich eine Literaturarbeit verfassen. Auf Grundlage bestehender wissenschaftlicher Literatur führe ich eine systematische Literaturrecherche durch und analysiere, strukturiere und bewerte die Ergebnisse in Hinblick auf die zu bearbeitenden Fragestellungen. Besondere Relevanz hat hierbei die verknüpfende Arbeitsweise, um die Ergebnisse aus den drei Teilbereichen (DIQ, ERP-Systeme und serviceorientierte Unternehmen) in Beziehung zueinander zu setzen.

Das weitere Vorgehen gliedert sich in drei Schritte und ist in Abb. 2-1 dargestellt.

![Abb. 2-1: Übersicht über die Methodik](image)

Darauf aufbauend erfolgt im zweiten Schritt die Untersuchung des ERP-Systems und der Dienstleistungsunternehmen jeweils im Kontext der DIQ. Dabei werden die Aspekte, die die Besonderheit von ERP-Systemen und Dienstleistungsunternehmen ausmachen und die potentielle Herausforderungen beim Einsatz von DIQ-Methoden darstellen, identifiziert und beschrieben. Die Ergebnisse dieses Schrittes tragen zur
Ermittlung der Evaluationskriterien (Kapitel 7.2), die zur Auswertung der Methoden eingesetzt werden, bei.

Im dritten Schritt werden die Erkenntnisse aus den vorhergehenden Schritten zur Evaluation der Methoden verwendet. Hierbei werden die Methoden nach Kriterien evaluier, die die Anwendbarkeit der Methoden im Rahmen der Implementierung und dem Betrieb eines ERP-Systems innerhalb serviceorientierter Unternehmen sicherstellen.

Literaturrecherche

Um eine grundlegende Wissensbasis zu schaffen und Schlagwörter des Themenbereiches zu identifizieren, orientierte ich mich zunächst an den Publikationen der einschlägigen, qualitativ hochwertigen Journales aus dem Bereich der Informatik und Wirtschaftswissenschaften sowie an den Ergebnissen der International Conference on Information Quality (ICIQ)\(^\text{13}\). Anschließend wurde die Recherche anhand der Schlagwörter in multidisziplinären, wissenschaftlichen Datenbanken fortgesetzt, um systematisch nach relevanter Literatur zu suchen.

\(^{13}\) http://mitiq.mit.edu/ICIQ/

\(^{15}\) Vgl. Xu u. a. (2002).

mangelhaften DIQ als auch den Prozess des DIQ-Managements bei der Implementierung eines ERP-Systems.

Hilfreich bei der Identifikation der Methoden war die Vorarbeit von Batini et al. (2009), die in ihrem veröffentlichten Forschungsbeitrag eine Reihe von Methoden zur Bewertung und Optimierung der DIQ entlang verschiedener Dimensionen verglichen. Auf Grundlage dieses Beitrages erfolgte zunächst die Auswahl der potentiellen Methoden, die im Anschluss auf ihrer Anwendbarkeit hin evaluiert wurden.

2.2. Aufbau

3. Begriffsdefinitionen

3.1. Daten und Informationen

Als Basis für die weitere Verwendung der Begriffe Daten und Informationen im Verlauf dieser Arbeit ist es hilfreich, kurz auf die inhaltliche Bedeutung einzugehen. Im alltäglichen Sprachgebrauch werden die Begriffe Daten und Informationen sehr häufig vermischt und in einem falschen Zusammenhang eingesetzt. Ebenso kann man in der Forschungsliteratur aus dem Bereich der DIQ beobachten, dass oftmals keine klare Differenzierung beider Begriffe erfolgt und je nach Autor entweder der Begriff Daten oder Informationen vorgezogen wird. Im Folgenden werde ich beide Begriffe kurz definieren.

Daten sind diskrete, objektive Fakten, die Zustände der realen Welt beschreiben und meist in kodierter, maschinenlesbarer Form gespeichert werden. Die Daten liegen in ungeordneter Form vor und sind ohne Kontext für den Betrachter nicht verständlich. In diesem Zusammenhang wird oftmals auch der Begriff 'Rohdaten' verwendet.

3.2. Enterprise Resource Planning (ERP)-System

Ein ERP-System ist ein (standardisiertes) Anwendungssoftwarepaket für Unternehmen, welches die Integration von Geschäftsprozessen, Daten und Funktionsbereichen über das gesamte Unternehmen hinweg ermöglicht. Es enthält für verschiedene betriebliche Funktionsbereiche eine Vielzahl miteinander verknüpfter Module und ermöglicht den Anwendern eine ganzheitliche Sicht auf das Unternehmen. Durch den modularen Aufbau kann das ERP-System an die speziellen Bedürfnisse eines Unternehmens angepasst werden.

3.3. Serviceorientierte Unternehmen

Die Hauptaufgabe von Dienstleistungsunternehmen besteht in der Erstellung von Informationsprodukten und in der Bereitstellung von Dienstleistungen. Besonders im Dienstleistungssektor werden Informationssysteme intensiv eingesetzt, was unter anderem an der Informations- und Datenintensivität dieses Wirtschaftsbereiches liegt.

In dieser Arbeit verwende ich den Begriff 'Dienstleistungsunternehmen' als Synonym für den Begriff 'serviceorientiertes Unternehmen'.

23 Vgl. zu diesem Absatz Statistisches Bundesamt Deutschland (2009).
4. Das Konzept der Daten- und Informationsqualität

4.1. Einleitung

Wie aus der Literatur des Qualitätsmanagements bekannt, stellt der Qualitätsbegriff ein relatives Konzept dar. 25 Die Qualität eines Produktes wird je nach Anwendungskontext und Betrachter unterschiedlich wahrgenommen und demnach mit verschiedenen Attributen beschrieben. Wie die Qualität von materiellen Produktionsgütern lässt sich auch die Qualität von Daten und Informationen durch verschiedene Attribute, die Qualitätsdimensionen, beschreiben. 26 Je nach Anwendungskontext und Anwender werden andere Anforderungen an die DIQ gestellt. Die Wahrnehmung und Bewertung der DIQ hängt insbesondere von der tatsächlichen Verwendung der Daten ab. 27

In den letzten Jahren wurden eine Vielzahl von Forschungsbeiträgen veröffentlicht, die das Wissen im Bereich der DIQ erweitert haben, jedoch ist es bis heute nicht gelungen, eine einheitliche, allgemein anerkannte Definition des Begriffes der Daten- und Informationsqualität auszuarbeiten. Gründe hierfür sind zum einen die vielen Facetten, die dieser Themenbereich umfasst, und zum anderen die Relativität der Qualitätskomponente, wodurch eine präzise, allumfassende Definition der Qualitätsdimensionen nicht möglich ist.

Die Herausforderung bei der Definition der Qualitätsdimensionen besteht in der Identifikation sämtlicher Dimensionen, die für die Bewertung der DIQ relevant sind. Zudem müssen die Qualitätsdimensionen operationalisiert werden, um das subjektive

Qualitätsempfinden der Betrachter der Informationen für eine umfassende Analyse in Zahlen auszudrücken und vergleichbar zu machen. Ein umfassendes Verständnis über die Qualitätsdimensionen ist die Voraussetzung zur Lösung von DIQ-Problemen in Unternehmen.28 Verschiedene Forscher haben in den letzten Jahren eine Vielzahl von Publikationen veröffentlicht, die sich mit der Definition der Attribute beziehungsweise der Dimensionen der DIQ befassen. Aufgrund der unterschiedlichen Betrachtungsweisen und Ansätze lieferten diese Publikationen verschiedene Ergebnisse. Um einen Einblick in die Ansätze zur Definition der DIQ zu geben, stelle ich drei Modelle, die in der Literatur häufig zitiert wurden, im Folgenden kurz dar.

4.2. Modelle der DIQ

4.2.1. Der ontologische Ansatz

Um ein grundlegendes Verständnis zu schaffen, welche Attribute zur Beschreibung der Qualität von Daten und Informationen nötig sind, wurde eine theoretische Untersuchung durchgeführt, die auf dem ontologischen Ansatz aufbauend, die Rolle des Informationssystems ins Zentrum der DIQ stellt. 29 Dabei wird das Informationssystem als Repräsentation eines Ausschnitts der realen Welt betrachtet. Bei dieser Repräsentation können Defizite auftreten.

Diese Defizite ergeben sich durch den Vergleich zwischen dem wahrgenommenen Ausschnitt der realen Welt (RW), den der Anwender durch Betrachtung des Informationssystems erhält, und dem wahrgenommenen Ausschnitt, den der Anwender bei direkter Beobachtung der RW erhält. Treten bei diesem Vergleich Unterschiede auf, so spricht man von Defiziten oder auch Repräsentationsmängeln. Ausgehend von diesen Repräsentationsmängeln wurden anschließend die intrinsischen Qualitätsdimensionen definiert:

- Vollständigkeit der Repräsentation
- Eindeutige Repräsentation der RW
- Sinnvolle Repräsentation der RW
- Fehlerfreie Repräsentation der RW

4.2.2. ’Fitness for use‘-Konzept

Der Ansatz, der im englischsprachigen Raum unter dem Begriff ’fitness for use‘ bekannt ist, definiert die DIQ aus der Sicht des Datenkonsumenten und hebt dadurch die Bedeutung des Datenkonsumenten hervor. In Anlehnung an die Gedanken des TQM ist es nämlich schlussendlich der Verbraucher, der die Qualität eines Produktes subjektiv aus der eigenen Perspektive bewertet. Infolgedessen entscheidet der Datenkonsument, ob die Daten für seinen Anwendungszweck geeignet sind oder nicht und demnach auch, welche Qualitätsdimensionen er als relevant betrachtet.

In einer Studie, die auf dem „fitness for use“-Konzept basiert, erarbeiteten Wand und Strong (1996) ein Rahmenwerk, das eine Vielzahl an Qualitätsdimensionen, die aus der Sicht eines Datenkonsumenten für die DIQ relevant sind, beinhaltet. Auf Basis einer umfangreichen Befragung von Datenkonsumenten mehrerer Unternehmen aus verschiedenen Wirtschaftsbereichen wurden Attribute zur Beschreibung der DIQ gesammelt, diese den Dimensionen zugeordnet und anschließend mittels Faktorenanalyse auf ein hierarchisches Modell reduziert.

Das Ergebnis ist ein Datenqualitätsmodell, welches vier Kategorien umfasst. Innerhalb dieser Kategorien befinden sich 15 Qualitätsdimensionen. Da dieses Modell auch im weiteren Verlauf dieser Arbeit verwendet wird, gehe ich in Kapitel 4.3 näher darauf ein.

In einer anschließenden Studie wurde das vorgeschlagene Modell auf seine Anwendbarkeit im Kontext eines Unternehmens validiert, wodurch seine praktische Relevanz bestätigt wurde. Dennoch sollte man bedenken, dass sich die technischen Umfeldbedingungen in den letzten 15 Jahren rapide verändert haben und man kritisch sein sollte, ob das vorliegende Modell und die darin beschriebenen Qualitätsdimensionen weiterhin ausreichend sind.

Um eine hohe DIQ zu erhalten und den reibungslosen Ablauf der Geschäftsprozesse zu gewährleisten, muss die Qualität innerhalb aller vier Qualitätskategorien ausreichend hoch sein. Beispielsweise reicht es in einem zeitkritischen Prozess nicht aus, den Datenkonsumenten zwar korrekte, fehlerfreie Aktienkurswerte zur Verfügung

4.2.3. Information als Informationsprodukt
Ein Informationsprodukt stellt das Ergebnis eines Prozesses innerhalb eines „Information Manufacturing Systems“ dar, durch den Daten durch Operationen, wie Aggregation, Kalkulation und Transformation, so verändert und aufbereitet werden, dass sie einen Wert für den Empfänger darstellen.33

Die Grundidee hinter diesem Ansatz besteht darin, dass Unternehmen ihre Informationen als Informationsprodukte (IP) betrachten, um somit die Methoden und Prinzipien, die im Rahmen des TQM zur Qualitätsverbesserung von physischen Gütern und Geschäftsprozessen erfolgreich eingesetzt wurden, auf Informationsprodukte zu übertragen. Dies ist möglich, da eine Analogie zwischen dem Produktionsprozess von physischen Gütern und dem von immateriellen Informationsgütern, den Informationsprodukten, besteht.34

Im Kern dieses Ansatzes steht der Produktionsprozess, da der Produktionsprozess eine bedeutende Rolle spielt: Die Qualität eines materiellen Produktes basiert auf den Prozessen, mit denen das Produkt entwickelt und produziert wird. Gleichermaßen basiert die Qualität der Daten und Informationen auf den Entwicklungs- und Produktionsprozessen, die an der Herstellung des IP beteiligt sind.35

Wie auch bei der Produktion von materiellen Gütern, sind an der Herstellung der Informationsprodukte eine Reihe Personen beteiligt, die man anhand ihrer Aufgaben innerhalb des Prozesses kategorisieren kann.36 Zu den wichtigsten Aufgaben innerhalb des Produktionsprozesses gehört das Sammeln und Generieren von Rohdaten, die

Verwaltung und Speicherung sowie die Datenabfrage und eventuelle Veränderung der Daten durch den Datenkonsumenten.37

4.3. Definition der Qualitätsdimensionen

40 http://www.dgiq.de.
Im weiteren Verlauf dieser Arbeit verwende ich dieses Modell und die entsprechenden deutschen Begriffe für die Qualitätsdimensionen. Für die Verwendung dieses Modells sprechen folgende Gründe: Zum einen basiert dieses Modell auf den bestehenden Erkenntnissen der Forschungsliteratur und wurde in Verbindung mit der Total Data Quality Management (TDQM)-Methode in der Praxis erfolgreich eingesetzt.42 Des Weiteren kann man dieses Modell als umfassend betrachten, da es zum einen sämtliche Dimensionen abdeckt, die von Autoren zuvor erarbeitet und in der Literatur veröffentlicht wurden, und zum anderen die DIQ aus der Perspektive des Konsumenten definiert.43

Um die Validität zu unterstützen, stelle ich in Tab. 4-1 verschiedene Forschungsergebnisse gegenüber.

41 Vgl. in Anlehnung an das Modell der Deutschen Gesellschaft für Informations- und Datenqualität e.V. (DGIQ).

42 Vgl. Kovac, Lee, Pipino (1997), S. 63.

43 Vgl. Wang, Strong (1996), S. 5.
4.4. Problembereiche in Bezug auf die DIQ
In der Forschungsliteratur existieren eine Reihe von Praxisbeispielen, die die verschiedenen Formen der Probleme in Bezug auf die DIQ49 und deren Auswirkungen zeigen.

\begin{tabular}{|c|c|c|c|c|}
\hline
\hline
\textbf{Inhalt} & & & & & \\
Hohes Ansehen & & & & ✓ & \\
Fehlerfreiheit & ✓ & ✓ & ✓ & ✓ & \\
Objektivität & & & ✓ & & \\
Glaubwürdigkeit & & & ✓ & ✓ & \\
\textbf{Nutzung} & & & & & \\
Aktualität & ✓ & ✓ & ✓ & ✓ & \\
Wertschöpfung & & & & ✓ & \\
Vollständigkeit & ✓ & ✓ & ✓ & ✓ & \\
Angemessener Umfang & & & ✓ & ✓ & \\
Relevanz & & ✓ & ✓ & ✓ & \\
\textbf{Darstellung} & & & & & \\
Verständlichkeit & ✓ & ✓ & ✓ & ✓ & \\
Übersichtlichkeit & & & & ✓ & \\
Einheitliche Darstellung & ✓ & ✓ & ✓ & ✓ & \\
Eindeutige Auslegbarkeit & & & ✓ & ✓ & \\
\textbf{System} & & & & & \\
Zugänglichkeit & ✓ & ✓ & ✓ & ✓ & \\
Bearbeitbarkeit & & & & & \\
\textbf{Zusätzliche Dimensionen} & Datenschutz / Sicherheit, Eigentum & Sicherheit, Manipulierbarkeit & & & \\
\hline
\end{tabular}

Tab. 4-1: Literaturübersicht der Qualitätsdimensionen

44 Vgl. Wang, Strong (1996), S. 20.
46 Vgl. Redman (1998), S. 80.
48 Vgl. Wixom, Todd (2005), S. 88.
49 Im weiteren Verlauf: 'DIQ-Problem'.
Generell kann man ein DIQ-Problem in Anlehnung an den ontologischen Ansatz als Defizit zwischen dem wahrgenommenen Zustand der realen Welt und dessen Repräsentation innerhalb eines Informationssystems verstehen.⁵⁰

Betrachtet man den „fitness for use“-Ansatz, bei dem der Datenkonsument im Vordergrund steht, so spricht man von einem DIQ-Problem, wenn die Informationen nicht den Erwartungen des Datenkonsumenten entsprechen. Die DIQ ist somit aus der Sicht des Datenkonsumenten mangelhaft.

Betrachtet man rein den ökonomischen Aspekt, kann man die Kosten aufgrund mangelhafter DIQ in vier Kategorien unterteilen:⁵¹

- Opportunitätskosten aufgrund von verlorenen und verpassten Erlösen.
- Prozesskosten entstehen, wenn der Prozess aufgrund von DIQ-Problemen nicht zufriedenstellend ausgeführt wurde und eventuell erneut ausgeführt werden muss. Darunter fallen auch die Kosten der Nacharbeit und des Ausschusses.
- Kosten für die Bewertung/Messung der DIQ.
- Kosten für die Optimierung der DIQ.

Um die Ursache und Erscheinungsformen von DIQ-Problemen zu strukturieren, ist es hilfreich, auftretende Probleme aus den drei verschiedenen Perspektiven – Prozess, Technologie/Informationssystem und Mensch – zu betrachten.

4.4.1. Problemfaktor Prozess

Prozesse stellen die Grundlage für einen reibungslosen Ablauf der betrieblichen Aktivitäten dar und werden meist durch Informationssysteme unterstützt. Um diesen reibungslosen Ablauf zu gewährleisten, ist es unabdingbar, dass die Prozesse insbesondere im Hinblick auf die Datenverarbeitung fehlerfrei sind, da die Daten an vielen Stellen innerhalb des Prozesses verwendet werden, wie beispielsweise zu Beginn eines Geschäftsprozesses oder an Entscheidungsknoten, die den weiteren Ablauf des Prozesses bestimmen.⁵²

Meist liegt die Ursache von Datenfehlern in der Ablaufreihenfolge der Prozessaktivitäten. Datenfehler können in Form von fehlenden, sich widersprechenden

⁵¹ Vgl. die Kategorisierung Batini u. a. (2009), S. 20–21.

Ein weiterer Aspekt ist, dass die betrieblichen Prozesse auch den Veränderungen der externen Umwelt ausgesetzt sind. Daten, die über einen längeren Zeitraum von ausreichender Qualität waren, können aufgrund der Alterung oder aufgrund der Veränderungen der Prozesse, die das Unternehmen umgeben, ihre Qualität einbüßen. Nicht nur die Prozesse an sich unterliegen externen Veränderungen, sondern auch die Anforderung, die an die DIQ bestehen.

4.4.2. Problemfaktor Technologie/Informationssystem

Die Technologie und speziell das Informationssystem (IS) können von verschiedenen Problemen geplagt sein, die die DIQ negativ beeinflussen. Zu den häufigen Fehlerursachen bei der Datenverarbeitung zählen Systemabstürze während einer Transaktion, die zu inkonsistenten Daten führen, und unzuverlässige Eingabeüberprüfungen, die einerseits Datenfehler nicht aufhalten oder korrigieren oder andererseits die Eingabe von korrekten Daten verweigern.

liegen in fehlerhaftem und unvollständigem Systemdesign, Verarbeitungsfehler beim Systembetrieb oder auch in der Dekomposition des Systems. Als Folge dieser Defizite können die Daten innerhalb des IS unvollständig, doppeldeutig, bedeutungslos oder auch falsch sein.

DIQ-Probleme entstehen häufig auch aufgrund der Bedienbarkeit und der Akzeptanz des Informationssystems durch den Anwender. Wenn der Anwender für die Zusammenarbeit mit dem IS nicht ausreichend motiviert ist oder auch die Anforderungen des Anwenders vom IS nicht abgedeckt werden, wird der Anwender, um seine Aufgaben zu erledigen, beispielsweise isolierte Datenbanken in Form von Excel-Tabellen anlegen und so „um das System herum“ arbeiten. Dies führt zu Dateninkonsistenzen.

\subsection*{4.4.3. Problemfaktor Mensch}

Häufig treten DIQ-Probleme in Form von fehlerhaften Daten direkt bei der Dateneingabe durch den Datenproduzenten auf. Im Bereich der manuellen Dateneingabe können beispielsweise Tippfehler oder auch der Einsatz von mehreren verschiedenen Abkürzungsformen für ein und dieselbe Entität die DIQ negativ beeinflussen.

\footnote{Vgl. Madnick, Zhu (2006), S. 460.}

4.4.4. Zusammenfassung
Zusammenfassend kann man festhalten, dass sich die drei Komponenten Prozesse, Technologie/Informationssystem und Menschen auf verschiedene Weise auf die Qualität der Daten und Informationen auswirken. Oftmals sind die Ursachen komplex und betreffen mehrere der Komponenten, sodass eine gemeinsame Betrachtung aller Komponenten zur Identifizierung und Problemlösung von DIQ-Problemen nötig ist. Die DIQ stellt somit ein Konzept dar, das sich nicht nur auf die Daten bezieht sondern auch Prozesse, Menschen und die Technologie mit einbezieht.

Des Weiteren müssen Unternehmen die Herausforderung einer dynamischen Geschäftsumgebung meistern. Sowohl die Geschäftsprozesse als auch die Daten unterliegen den stetigen Veränderungen der Unternehmensumwelt. Unternehmen müssen daher fortlaufend die Veränderungen der Umwelt identifizieren und auf diese durch entsprechende Maßnahmen, wie beispielsweise durch die Anpassung der Geschäftsprozesse oder durch die Aktualisierung der Daten, reagieren.

5. Enterprise Resource Planning-Systeme

5.1. Einleitung

Ein Enterprise Resource Planning (ERP)-System ist ein (standardisiertes) Anwendungssoftwarepaket für Unternehmen, welches die Integration von Geschäftsprozessen, Daten und Funktionsbereichen über das gesamte Unternehmen hinweg ermöglicht. ERP-Systeme bestehen aus einer Vielzahl von einzelnen Modulen, die ineinander integriert das ERP-System bilden.61

Ursprünglich wurden Enterprise Resource Planning-Systeme für den Einsatz in Fertigungsunternehmen entwickelt.62 Aufgrund der Vorteile, die sich durch den Einsatz dieser Systeme in Fertigungsunternehmen ergeben, haben auch Dienstleistungsunternehmen damit begonnen, ERP-Systeme zu implementieren. Beispielsweise sind Unternehmen aus dem Finanzdienstleistungssektor aufgrund der fortlaufenden Internationalisierung der Finanzindustrie und aufgrund der stetig steigenden Anforderungen der global agierenden Kunden dazu gezwungen, eine IT-Infrastruktur aufzubauen, die diesen Anforderungen heute und in der Zukunft gerecht wird.63 ERP-Systeme können hierzu ihren Beitrag leisten.

Probleme und Defizite innerhalb der Daten- und Informationsqualität sind einer der Hauptgründe, weshalb Unternehmen sich für die Implementierung eines ERP-Systems entscheiden.64

Die weiteren oftmals in der Literatur genannten Gründe für die Implementierung eines ERP-Systems in Dienstleistungsunternehmen sind:

- Wettbewerbsfähig bleiben65
- Unternehmensweite Kontrolle66
- Integrierte Datenhaltung
- Ablösung von verteilten Altsystemen67

64 Vgl. Xu u. a. (2002), S. 54.
65 Vgl. die nächste zwei Gründe mit Xu u. a. (2002), S. 47.
Ersatz für unzuverlässige Finanz- und Materialmanagementsysteme
Bereitstellung einer ganzheitlichen Sicht auf das Unternehmen durch unternehmensweite Echtzeitdaten
Unternehmensübernahmen und -fusionen

Damit ein ERP-System erfolgreich implementiert werden kann, müssen Unternehmen die kritischen Fehlerfaktoren kennen und vermeiden. Einer dieser Faktoren ist die Daten- und Informationsqualität.

Die Vorteile im Einsatz eines ERP-Systems ergeben sich hauptsächlich durch die integrierte Datenhaltung und durch die Ablösung von Altsystemen. Durch die Ablösung von Altsystemen können Kosten, die durch den hohen Administrationsaufwand entstehen, eingespart werden. Zudem entfallen die fehleranfälligen Schnittstellen zwischen den einzelnen Altsystemen.68

5.2. Spezifische Eigenschaften eines ERP-Systems
Im Hinblick auf das DIQ-Management ist es hilfreich, sich einige spezifische Charakteristika eines ERP-Systems anzusehen, um dadurch DIQ-Problembereiche zu identifizieren.

5.2.1. Integrierte Datenhaltung
Ein ERP-System speichert die Daten meist zentral innerhalb einer integrierten relationalen Datenbank und stellt diese funktionsübergreifend zur Verfügung.69 Der Vorteil der integrierten Datenhaltung besteht darin, dass isolierte Dateninseln vermieden werden und die Geschäftsprozesse auf einer einheitlichen Datenbasis basieren. Des Weiteren ermöglicht ein ERP-System den Echtzeit-Datenzugriff auf unternehmensweite Daten und trägt damit zu einer effizienteren Steuerung und Entscheidungsfindung bei.

Die integrierte Datenhaltung bringt jedoch auch negative Aspekte mit sich, die sich, wenn nicht entsprechende Gegenmaßnahmen getroffen werden, nachteilig auf die DIQ auswirken können. Treten beispielsweise Fehler innerhalb der Bestands- und Transaktionsdaten des ERP-Systems auf, so verbreiten diese sich rapide und können

5.2.2. Vorkonfiguration

Sollten die vordefinierten Datenstrukturen und das Datenschema des ERP-Systems nicht den Anforderungen des Unternehmens entsprechen, so hat dies negative Auswirkungen auf die DIQ. Wenn relevante Daten nicht durch das ERP-System repräsentiert werden können, bleibt oftmals nur die Möglichkeit das Datenschema anzupassen oder als schnelle Lösung Eingabefelder zu verwenden, die für einen anderen Zweck gedacht waren. Die Anpassung des ERP-System ist meist sehr zeitaufwendig und mit hohen Kosten verbunden. Zudem ist die Anpassung keine einmalige Tätigkeit, da bei Softwareaktualisierungen die Funktionalität der Änderungen geprüft und gegebenenfalls angepasst werden muss.

5.2.3. Systemarchitektur
ERP-Systeme können nicht nur als eine einzelne Instanz implementiert werden, sondern auch an mehreren Unternehmensstandorten, jeweils als eigene Instanz, eingesetzt werden. In dieser Situation muss sichergestellt werden, dass entweder ein unternehmensweites einheitliches Datenschema eingesetzt wird oder Middleware die

Konnektivität zwischen mehreren Instanzen sicherstellt. Problembereiche können sich durch unterschiedliche Datenformate, inkonsistente Datendefinitionen und -werte ergeben.74

5.3. Daten und Informationen im ERP-Kontext

5.3.1. Die Relevanz der Daten- und Informationsqualität im ERP-Kontext

Die Daten spielen innerhalb des ERP-Systems eine entscheidende Rolle.75 Unternehmen, die ihre Geschäftsprozesse durch ein ERP-System unterstützen, führen das operative Geschäft, die weitere Geschäftsplanung und die Entscheidungsfindung auf Grundlage der Bestands- und Transaktionsdaten durch.76 Fehlerhafte Daten und gestörte Prozessabläufe wirken sich negativ auf die Effizienz der Prozesse und die Qualität der Entscheidungsfindung aus.77 Das Fehlen der Berücksichtigung der DIQ bei BPR-Projekten, die meist einhergehend mit der Implementierung eines ERP-System erfolgen, ist außerdem einer der Hauptgründe, warum eine Vielzahl von BPR-Projekten scheitern.78

Durch diese hohe Abhängigkeit sind Unternehmen gezwungen, die Qualität ihrer Daten und Informationen einem fortlauenden, systematischen Prozess zur Steuerung und Optimierung, wie dem DIQ-Management, zu unterziehen.

Die Daten eines ERP-Systems lassen sich in folgende drei Gruppen klassifizieren:79

- Die Systemkonfigurationsdaten legen die grundlegenden Einstellungen, das Verhalten und das Aussehen des ERP-Systems fest.
- Der Begriff Bestandsdaten umfasst die Kerndatensätze, die Informationen über die Geschäftspartner, wie Kunden oder Lieferanten, eines Unternehmens speichern. Bestandsdaten werden meist einmalig ins System eingetragen, ändern sich selten und werden bei einer Vielzahl von Transaktionen verwendet, um diese zu unterstützen.80

74 Vgl. Strong, Lee, Wang (1997b), S. 42.
75 Vgl. Haug, Arlbjorn, Pedersen (2009), S. 1053.
76 Vgl. Vosburg, Kumar (2001), S. 21.
77 Vgl. Batini u. a. (2009), S. 2.
78 Vgl. Wand, Wang (1996), S. 86.
79 Vgl. Vayghan u. a. (2007), S. 671.
Transaktionsdaten sind Daten, die bei der Verarbeitung innerhalb des ERP-Systems entstehen und relevante Ereignisse innerhalb eines Unternehmens repräsentieren.

Ein Vergleich zwischen Bestands- und Transaktionsdaten in Bezug auf die DIQ verdeutlicht, dass ein Fehler beziehungsweise eine mangelhafte DIQ innerhalb von Bestandsdaten im Vergleich zu Transaktionsdaten weitreichendere Auswirkungen haben kann, da Bestandsdaten zum einen für eine Vielzahl von Transaktionen verwendet werden und sich somit weiter streuen und zum anderen eine längere Lebensdauer haben. Unternehmen sollte sich daher zunächst auf die DIQ der Bestandsdaten konzentrieren, damit die Grundlage für weitere Transaktionen geschaffen wird.

Der Einsatz eines ERP-Systems hat sowohl positive als auch negative Auswirkungen auf die DIQ der Unternehmensdaten. Strong und Volkoff (2005) untersuchten die Auswirkungen auf Unternehmensdaten bei Einsatz eines ERP-Systems und kamen zu dem Ergebnis, dass ein ERP-System auf der einen Seite die Grundlage für eine hohe DIQ darstellt, diese ermöglicht und fördert und auf der anderen Seite selbst eine hohe DIQ benötigt, um eine effiziente Verarbeitung zu ermöglichen. Dadurch, dass das ERP-System unternehmensweit meist in allen Funktionsbereichen eingesetzt wird, muss die DIQ nicht mehr in einem lokalen, funktionsorientierten Kontext, sondern in einem globalen, verteilten Kontext betrachtet werden. Folglich müssen Datendefinitionen und Qualitätsspezifikationen, die in einem lokalen Kontext relevant waren, an die Anforderungen auf globaler, unternehmensweiter Ebene angepasst werden. Des Weiteren konnten Strong und Volkoff beobachten, dass die DIQ auf globaler Unternehmensebene anstieg, jedoch auf der lokalen Ebene der Funktionsbereiche gesunken ist. Die positiven Effekte auf globaler Ebene entstehen durch eine einheitliche Repräsentation und durch die unternehmensweite Verfügbarkeit der Daten. Auf lokaler Ebene führt der Einsatz eines ERP-Systems dazu, dass die Funktionalität und die Benutzeroberfläche nicht mehr vollständig auf die individuellen Anforderungen eines Funktionsbereiches zugeschnitten sind. Um den Anforderungen sämtlicher Funktionsbereiche zu genügen, muss ein Kompromiss

zwischen der Erfüllung spezifischer Anforderungen und der universellen Einsetzbarkeit getroffen werden. Das Problem manifestiert sich beispielsweise darin, dass zum einen die Benutzeroberfläche komplexer wird und zum anderen bei einer Transaktion mehr Daten eingegeben werden müssen, als eigentlich für die weitere Bearbeitung nötig sind, nur um die Anforderung an die Vollständigkeit der Daten auf globaler Ebene zu erfüllen. Dies kann sich unter Umständen negativ auf die DIQ auswirken und dazu führen, dass die Anforderungen der Anwender nicht mehr vollumfassend erfüllt werden. Besonders betroffen sind dadurch die darstellungsbegrenzten Qualitätsdimensionen.

Stellt man die Zugänglichkeit und Sicherheit der Daten und Informationen in den Vordergrund, so erhöht ein ERP-System zum einen die Zugänglichkeit durch die integrierte Datenhaltung und die Bereitstellung von unternehmensweiten Daten und zum anderen die Sicherheit, da der Datenzugriff durch ein umfassendes Rechtekonzept reguliert werden kann.83

5.3.2. Datenverarbeitung in ERP-Systemen
Um die potentielle Problembereiche der Daten- und Informationsqualität in Bezug auf die Implementierung und den Einsatz eines ERP-Systems zu erkennen, ist es hilfreich, sich im Folgenden einen Überblick über die Datenverarbeitung eines ERP-Systems zu verschaffen und speziell die Schnittstellen zu betrachten.

entsprechende Schnittstellen, meist mittels Unterstützung von Werkzeugen zur Transformation, in das ERP-System übertragen.

- Bei der Datenausgabe verlassen die Daten das ERP-System entweder durch den Datenkonsumenten, der die Daten innerhalb seines Anwendungskontexts benötigt, oder durch den Datenexport in externe IS.

Die Betrachtung der Schnittstellen ermöglicht eine Strukturierung des Problembereiches und hilft bei der folgenden Identifikation von potentiellen schnittstellspezifischen Risiken in Bezug auf die DIQ.

Besonders während der Einführung eines ERP-Systems müssen die Daten der Altsysteme häufig in das ERP-System übertragen werden. Hierbei muss die Qualität der Quelldaten berücksichtigt werden, um Daten mit mangelhafter Qualität nicht in das ERP-System zu übernehmen. Bei der Datenmigration treffen Verantwortliche häufig auf Quelldaten, die aufgrund der chaotischen Entwicklung der Altsysteme nicht ausreichend dokumentiert sind, die nicht im gewünschten Format vorliegen oder, die inkonsistent, veraltet und falsch sind. Datenfilter und die Anwendung von Geschäftsregeln auf die Quelldaten stellen sicher, dass die Quelldaten den Anforderungen des ERP-Systems genügen.

In Bezug auf die Datenausgabe kommt es aus der Sicht des Datenkonsumenten zu Präsentationsfehlern, wenn dem Konsumenten falsche Daten bereitgestellt werden, wenn diese schwer interpretierbar sind, oder, wenn andere Anforderungen, wie beispielsweise die Aktualität der Daten, nicht erfüllt werden. Werden Daten exportiert,
so müssen die Anforderungen des Zielsystems erfüllt werden, da, wie auch beim Datenimport, eine mangelhafte Transformation zu DIQ-Problemen führen kann.

Um die potentiellen Probleme an den Schnittstellen des ERP-Systems zu vermeiden, müssen Maßnahmen ergriffen werden, um die Schnittstellen während der Implementierung und dem Betrieb abzusichern. Grundsätzlich sollten Unternehmen die DIQ sicherstellen, bevor die Daten in das System gelangen und während der Implementierung auf systeminterne Kontrollmechanismen und Methoden zur Eingabekontrolle Wert legen.84

5.4. Der ERP-Lebenszyklus

Abb. 5-1: Die Phasen des ERP-Lebenszyklus

Die DIQ spielt innerhalb des Lebenszyklus eines ERP-Systems eine kritische Rolle und stellt insbesondere während der Implementierungsphase einen kritischen Erfolgsfaktor dar.85 Um die negativen Auswirkungen einer mangelhaften DIQ während der Lebensphasen zu vermeiden und die Implementierung eines ERP-

Systems erfolgreich abzuschließen, sollten sich Unternehmen über die Bedeutung der DIQ vollkommen bewusst sein und die Komplexität der DIQ verstehen. Dabei dürfen Unternehmen ihre Daten und Informationen nicht nur als Nebenprodukte der betrieblichen Prozesse betrachten, sondern als wertvolle Unternehmensressource. Im weiteren Verlauf werden die Phasen des Lebenszyklus hinsichtlich der DIQ untersucht.

5.4.1. Entscheidungsfindung und Erwerb
Im Rahmen der Entscheidungsfindung entscheiden die Verantwortlichen eines Unternehmens, ob ein ERP-System im Unternehmen eingesetzt werden soll. Diese Entscheidungsfindung stellt keine leichte Aufgabe dar, da viele Aspekte berücksichtigt werden müssen und Interessenskonflikte innerhalb des Unternehmens die Entscheidungsfindung erschweren. Besonders die Nutzen-Kosten-Analyse ist in dieser Phase essentiell, da eine ERP-Implementierung sehr kostenintensiv ist.

Haben sich Unternehmen für die Adoption eines ERP-Systems entschieden, so folgt die Phase des ERP-Erwerbs. In dieser Phase werden im Unternehmen eine Reihe potentieller ERP-System evaluiert, um sich letztendlich auf ein ERP-System zu einigen, welches angeschafft wird. Die Analyse, welche Anforderungen das Unternehmen an das ERP-System stellt und welche Funktionalitäten das ERP-System bereitstellt, stellt eine kritische Aufgabe dar. Unternehmen sollten sich für ein ERP-System entscheiden, welches ihren Anforderungen am besten entspricht, um Kosten und Risiken einer Anpassung des Systems zu vermeiden.

Hinsichtlich der DIQ sollten Unternehmen berücksichtigen, dass eine grundlegende Analyse der DIQ die Entscheidungsfindung und den Erwerb unterstützen kann. Unternehmen sollten untersuchen, welche Problemfelder innerhalb des Unternehmens in Bezug auf die DIQ momentan bestehen und, ob und wie diese durch den Einsatz eines ERP-Systems gelöst werden können. Speziell die Anforderungen, die die Anwender an die DIQ stellen, sollten vollumfassend analysiert werden, um zu ermitteln, in welchem Umfang das ERP-System diese abdeckt, um weitere Kosten durch die Anpassung des Systems zu vermeiden.

86 Vgl. Xu u. a. (2002), S. 47.
5.4.2. Implementierung
Im Zuge der Implementierung erfolgt die Anpassung und Einführung des ERP-Systems in das Unternehmen. Diese Phase wird meist durch externe Berater, die Methoden, das Wissen und die Erfahrungen bereitstellen, unterstützt, um das Risiko einer fehlgeschlagenen Implementierung zu vermeiden. Unternehmen sollten hierbei den tatsächlichen Umstellungsaufwand nicht unterschätzen, da nicht nur Aspekte der Software eine Rolle spielen, sondern auch u.a. die Reorganisation der betrieblichen Abläufe und die damit verbundene Umstellung und Schulung der Mitarbeiter.

Anwendertraining

Datenmigration
Vor der Inbetriebnahme des ERP-Systems müssen die Daten der Altsysteme, die abgelöst werden, in das neue ERP-System übertragen werden. Die Daten der Altsysteme stellen eine Herausforderung dar und können schnell zu Stolpersteinen bei der Datenmigration werden. Deshalb ist es wichtig, dass sämtliche externe Daten vor dem Import auf ihre Qualität hin überprüft werden und auftretende Defizite durch eine

5.4.3. Betrieb, Wartung und Entwicklung

Im Laufe des Betriebs entwickelt sich das ERP-System stetig fort. Veränderungen der Geschäftsumgebung, die Beseitigung von Funktionsfehlern, neue betriebliche Anforderungen oder auch die Einbindung externer Geschäftspartner führen dazu, dass das ERP-System angepasst oder sogar erweitert werden muss. Durch die Integration neuer Funktionalitäten und Module ergeben sich weitere Vorteile, jedoch auch Herausforderungen in Bezug auf die DIQ.

Einbindung der Anwender

Auch nach der Implementierung ist die Einbindung der Anwender in einen Prozess zur Identifikation und Lösung von DIQ-Problemen wichtig. Anwender sollten die Möglichkeit haben, auftretende DIQ-Probleme dem Verantwortlichen zu melden, um einen Kommunikationsprozess zwischen den Verantwortlichen des betroffenen Funktionsbereiches und denen des IT-Fachbereiches anzustoßen. Die Beteiligung beider Bereiche ist wichtig, um eine umfassende Analyse der Probleme durchführen zu können. Der betroffene Funktionsbereich hat aufgrund der Vertrautheit mit den Daten ein weitreichendes Wissen über die Verwendung der Daten innerhalb des Unternehmens und kann dem IT-Fachbereich helfen, die Bedürfnisse der

Funktionsbereiche besser zu verstehen, um somit eine effizientere Problemlösung durchführen zu können.

Datenmanagement

Auch die Daten und Informationen unterliegen den fortlaufenden Veränderungen der externen Umwelt. Aufgrund dieser dynamischen Natur müssen die Daten und Informationen in einem kontinuierlichen Prozess über sämtliche Phasen ihres Lebenszyklus gewartet werden.

5.4.4. Stilllegung

Aufgrund neuer Technologien oder durch das Auftreten neuer betrieblicher Anforderungen, die das bestehende ERP-System nicht erfüllen kann, erfolgt die Ablösung des ERP-Systems. Meist erfolgt einhergehend mit der Ablösung des bestehenden ERP-Systems die Migration der Daten in das nachfolgende System. Hierbei ist es unabdingbar, wie in Kapitel 5.4.2 beschrieben, auf die Qualität der zu migrierenden Daten zu achten.

5.5. Zusammenfassung

6. Serviceorientierte Unternehmen

Im folgenden Kapitel analysiere ich die Anforderungen, die sich aufgrund der spezifischen Eigenschaften eines Dienstleistungsunternehmens an die DIQ ergeben.

Grundsätzlich hängt die Bereitstellung von qualitativ hochwertigen Dienstleistungen von der Fähigkeit des Unternehmens ab, Informationen zu sammeln, zu verarbeiten und zu verteilen.95

6.1. Charakteristika von Dienstleistungsunternehmen im Vergleich zu Fertigungsunternehmen

Die Aufgabe eines Fertigungsunternehmens besteht darin, Rohmaterialien durch einen Transformationsprozess in ein materielles Produkt zu verwandeln, das für den Kunden einen Wert darstellt. Im Gegensatz dazu impliziert eine Dienstleistung meist eine Handlung, bei der, je nach Tätigkeit, auch ein Produkt erstellt wird – jedoch dann meist ein Immaterielles.96

In der Literatur wurden eine Reihe von Unterschieden zwischen Dienstleistungsunternehmen und Fertigungsunternehmen identifiziert, die ich im Folgenden darstelle.97

6.1.1. Immaterialität / Intangibilität des Produktes

Zunächst einmal stellen die Immaterialität und die damit eng verbundene Intangibilität des Produktes den größten Unterschied zwischen Dienstleistungs- und Fertigungsunternehmen dar. Da der Kunde die Leistung des Produktes vor dem Kauf nicht evaluieren kann, ist der Erwerb einer Dienstleistung für ihn ein Risiko.

Produktbündel’ bereitzustellen.98 Die Grenzen der Fertigung und Dienstleistung vermischen sich zunehmend.

Als Folge der Immaterialität kann man die Nicht-Lagerbarkeit und die Nicht-Transportfähigkeit von Dienstleistungen99 betrachten. Im Hinblick auf die Produktivitätsmessung stellen Dienstleistungen eine Herausforderung dar, da die Qualität und Quantität von Dienstleistungen schwer messbar sind.

6.1.2. Kundenkontakt / Kundenspezifische Anforderungen

Der Aspekt des Kundenkontaktes spielt bei der Bereitstellung einer Dienstleistung oftmals eine entscheidende Rolle. Bei einer Vielzahl von Dienstleistungen erfolgt die Dienstleistung direkt am Kunden beziehungsweise mit seiner Beteiligung, wie beispielsweise der Haarschnitt. Das hat zur Folge, dass der Kunde eng in den Produktionsprozess eingebunden ist und auf diesen auch unter Umständen einwirkt. Der Grad der Beteiligung des Kunden kann je nach Dienstleistung variieren (Tab. 6-1).

Eine Klassifikation von Dienstleistungsunternehmen kann in Bezug auf die Einbindung des Kunden in den Dienstleistungsprozess in folgende Gruppen erfolgen:

<table>
<thead>
<tr>
<th>Grad der Einbindung</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Expert service“</td>
<td>Hoch</td>
</tr>
<tr>
<td></td>
<td>Buchhaltung</td>
</tr>
<tr>
<td></td>
<td>Consulting</td>
</tr>
<tr>
<td>„Service shop“</td>
<td>Mittel</td>
</tr>
<tr>
<td></td>
<td>Ausbildung, Schulung</td>
</tr>
<tr>
<td></td>
<td>Krankenhäuser</td>
</tr>
<tr>
<td>„Service factory“</td>
<td>Niedrig</td>
</tr>
<tr>
<td></td>
<td>Fast Food Restaurant</td>
</tr>
</tbody>
</table>

Tab. 6-1: Grad der Kundenbeteiligung am Dienstleistungsprozess100

6.1.3. Gleichzeitige Produktion und Konsumierung – „uno actu“-Prinzip101

Oftmals fällt der Zeitpunkt der Leistungserstellung und der Inanspruchnahme der Leistung zusammen, wie beispielsweise bei einem Konzert. Die Leistung ist demnach vergänglich und kann nicht gelagert werden. Dadurch, dass Leistungen nicht auf

98 Vgl. Becker, Beverungen, Knackstedt (2010), S. 34.
99 Gilt nicht für Informationsprodukte.
100 Vgl. Kellogg, Nie (1995), S. 325.
101 Vgl. Becker, Beverungen, Knackstedt (2010), S. 47.
Vorrat gelagert werden können, können Dienstleistungsunternehmen Schwankungen der Kundennachfrage nur schwer ausgleichen. Somit stellt beispielweise die Kapazitätsplanung eine kritische Aufgabe in Dienstleistungsunternehmen dar.

6.2. Zusammenfassung

Betrachtet man die besonderen Charakteristika von Dienstleistungsunternehmen im Kontext der DIQ, so kann man Folgendes festhalten:

Besonders Dienstleistungsunternehmen, deren Wertschöpfung durch die Produktion von Informationsprodukten, wie beispielsweise Statistiken, geprägt ist, sollten besonderen Wert auf ihre DIQ legen. Daten sind für diese Unternehmen die Primärressourcen und sollten dementsprechend behandelt werden.

Betrachtet man den Aspekt der gleichzeitigen Produktion und Konsumierung, so sollten Dienstleistungsunternehmen, deren Dienstleistungen synchron zur Leistungserbringungen durch den Kunden in Anspruch genommen werden, hohe Anforderungen an ihre DIQ stellen. Beispielsweise muss die Bereitstellung von Aktienkursen aktuell und fehlerfrei erfolgen.

7. Methodenevaluation

7.1. Begriffsdefinition: 'Methode'

Unter dem Begriff 'Methode' versteht man das wissenschaftlich planmäßige und folgerichtige Verfahren oder auch die „Art des Vorgehens“. ¹⁰³ Diese Begriffsdefinition möchte ich aufgreifen und in Bezug auf die folgenden Ausführungen spezialisieren.

Eine Methode beschreibt im weiteren Verlauf das planmäßige, gut durchdachte Vorgehen zur Herstellung und Gewährleistung der DIQ. Hierbei beschreibt eine Methode jedoch nicht nur allein das Vorgehen, sondern umfasst auch eine Reihe von Richtlinien und Techniken, die dieses Vorgehen unterstützen.¹⁰⁴

Eine Methode stellt somit ein Grundgerüst dar, welches zum einen Richtlinien und Techniken umfasst und zum anderen die planmäßige, systematische Anwendung dieser beschreibt.

7.2. Evaluationskriterien

Grundsätzlich können die Methoden anhand verschiedener Kriterien unterschieden werden.106

7.2.1. Datengetriebene vs. Prozessgetriebene Strategien

Um einen Überblick über beide beschriebenen Strategien zu geben, wurden diese in Tab. 7-1 gegenübergestellt.

106 Vgl. die folgende Kategorisierung und Beschreibung Batini, Scannapieco (2006).

107 Vgl. Lee u. a. (2004), S. 89.
<table>
<thead>
<tr>
<th>Beständigkeit der Ergebnisse</th>
<th>Datengetriebene Strategien</th>
<th>Prozessgetriebene Strategien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansatz</td>
<td>Reaktiv, symptomatisches</td>
<td>Proaktiv, Ansatz am Ursprung</td>
</tr>
<tr>
<td>Vorgehen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kurzfristig</td>
<td>Kosteneffizient</td>
<td>Kostenintensiv</td>
</tr>
<tr>
<td>- langfristig</td>
<td>Kostenintensiv</td>
<td>Kosteneffizient</td>
</tr>
<tr>
<td>Anwendungsgebiet</td>
<td>Statische Daten, einmaliger Einsatz</td>
<td>Dynamische Daten, fortlauferende Effekte</td>
</tr>
</tbody>
</table>

Tab. 7-1: Vergleich: Daten- und prozessgetriebene Strategien

Um diesen Bereich zu vervollständigen, folgt eine offene Liste mit datengetriebenen Verfahren:

- Vergleich der Datenwerte mit den Zuständen der realen Welt, die das Informationssystem abbildet. Ein Beispiel hierfür stellt die Inventur zur Aktualisierung des Lagerbestandes dar.
- Beschaffung neuer Datenquellen von höherer Qualität, um Datenwerte zu ergänzen oder zu ersetzen.\(^{108}\)
- Standardisierung (bzw. Normalisierung), um Datenwerte, die nicht dem Standard entsprechen zu ersetzen oder zu ergänzen.

Zusammenfassend kann festgehalten werden, dass die prozessgetriebenen Verfahren auf langfristige Sicht die bessere Wahl sind, um die Qualität der Daten und Informationen nachhaltig zu optimieren. Unternehmen sollten einen systematischen, vorbeugenden Prozess des DIQ-Managements initiieren und einen bisherigen reaktiven Ansatz ablösen.\(^{109}\) Dieser Prozess sollte den Fokus auf den Ursprung der DIQ-Probleme legen, um die Ursachen am Ursprung zu entfernen und dadurch die DIQ langfristig zu optimieren.

\(^{108}\) Vgl. zusätzlich die nächsten zwei Punkte Batini u. a. (2009), S. 5.

7.2.2. Bewertung vs. Optimierung
Methoden werden sowohl für die Bewertung als auch zur Optimierung der DIQ eingesetzt. Die Aktivitäten bezüglich der Bewertung und Optimierung sind eng miteinander verzahnt, da nur bei einer vorliegenden Bewertung Optimierungsmaßnahmen geplant und ausgeführt werden können. Methoden können somit nur erfolgreich sein, wenn die beiden Bereiche der Bewertung und Optimierung zugleich abgedeckt werden. Stellt eine Methode nur Ansätze zur Bewertung der DIQ bereit, so muss diese mit weiteren Methoden zur Optimierung gekoppelt werden. Diese Klassifikation bezieht sich somit auf die Vollständigkeit der Methode.

7.2.3. Generelle Anwendbarkeit vs. spezifische Anwendbarkeit

7.2.4. Qualitätsdimensionen und metrische Systeme

berücksichtigen die Geschäftsregeln, die betrieblichen und staatlichen Vorschriften und die Integritätsregeln der Datenbank und werden auf einen speziellen Anwendungskontext zugeschnitten.

Die Qualitätsdimensionen können meist durch mehrere verschiedene Maßzahlen bewertet werden.113 Diese Maßzahlen können sich durch verschiedene Eigenschaften, wie beispielsweise durch die Kosten der Messung, durch die Häufigkeit der Messung und durch die Bedeutung der zu messenden Dimension, voneinander unterscheiden.114 Um aus der Vielzahl an möglichen Maßzahlen diejenigen zu wählen, die hinsichtlich des Anwendungsgebietes geeignet sind, sollten Unternehmen systematisch vorgehen. Eine Übersicht über potentielle Maßzahlen und einen Ansatz zur Auswahl und Priorisierung dieser Maßzahlen stellt Umar et al. (1999) bereit.

7.2.5. Proaktiver vs. reaktiver Ansatz

7.3. Methoden

Im Folgenden werde ich verschiedene Methoden vorstellen, die im Rahmen der Implementierung und des anschließenden Betriebs eines ERP-Systems in serviceorientierten Unternehmen eingesetzt werden können. Die Auswahl dieser Methoden erfolgte anhand der in Kapitel 7.2 beschriebenen Evaluationskriterien.

Folgende Eigenschaften, die für einen Einsatz in einer ERP-Umgebung sprechen, weisen die folgenden Methoden auf:

- Die Methoden wurden nicht speziell auf einen Anwendungskontext zugeschnitten, sondern können universell eingesetzt werden.
- Die Methoden umfassen sowohl datengetriebene als auch prozessgetriebene Strategien.
- Die Methoden sind vollständig. Das heißt, sie behandeln sowohl den Bereich der DIQ-Bewertung als auch den Bereich der DIQ-Optimierung. Eine Ausnahme stellt hierbei die AIMQ dar.
- Die Methoden können sowohl reaktiv, zur Behebung von bestehenden DIQ-Problemen, als auch proaktiv, zur Vorbeugung, angewendet werden.
- Die Methoden basieren auf einer umfangreichen und fundierten Definition der Qualitätsdimensionen.

7.3.1. Total Data Quality Management (TDQM)

Total Data Quality Management (TDQM)\(^{115}\) stellt eine Methode zur Optimierung der Daten- und Informationsqualität (DIQ) innerhalb eines Unternehmens dar und zählt zu den ersten Methoden, die im Bereich der DIQ vorgestellt wurden.

\(^{116}\) Im weiteren Verlauf 'TDQM'.
\(^{117}\) Massachusetts Institute of Technology.

7.3.1.1. Phasen
In Anlehnung an den Demingkreis aus dem Bereich des TQM entwickelte Wang den TDQM-Kreislauf, der aus vier Phasen besteht (Definition, Messung, Analyse, Optimierung). Durch die iterative Anwendung\(^{120}\) dieser vier Phasen wird ein kontinuierlicher Prozess zur Optimierung der DIQ innerhalb eines Unternehmens in Gang gesetzt (Abb. 7-1).

Unternehmen sollten zunächst den Begriff der DIQ definieren, um eine einheitliche Sicht aller Beteiligten auf die DIQ zu gewährleisten. Anschließend erfolgt die Anforderungsanalyse, die ermittelt, welche Bedürfnisse die Informationskonsumenten haben. Diese Anforderungen werden den Qualitätsdimensionen zugeordnet und gegebenenfalls hinsichtlich ihrer Priorität geordnet. Zudem werden in dieser Phase die metrischen Systeme definiert, die die Qualitätsdimensionen operationalisieren.

Messung
Auf Grundlage der metrischen Systeme wird die Qualität der Daten und Informationen in Bezug auf ihre Qualität gemessen.

Analyse

Optimierung
Die Maßnahmen zur Optimierung der DIQ werden umgesetzt.

7.3.1.2. Prinzipien der TDQM
Im Folgenden werde ich kurz die grundlegenden Prinzipien, die sich aus der TDQM ergeben und für einen erfolgreichen Einsatz der TDQM nötig sind, darstellen.122 Berücksichtigen Unternehmen diese Prinzipien und setzen diese erfolgreich um, so

können Unternehmen ihre DIQ fortlaufend verbessern sowie die vielfältigen negativen Auswirkungen vermeiden, die aufgrund einer mangelhaften DIQ entstehen.

Informationen als Produkt

Umfassende Anforderungsanalyse

Steuerung, Kontrolle und Verwaltung des Informationsproduktionsprozesses
Aufgrund der kritischen Bedeutung des Informationsproduktionsprozesses sollte dieser unter besonderer Beobachtung stehen.

Der Lebenszyklus der Daten
Wie auch in Analogie zu dem Lebenszyklus von physischen Produkten durchlaufen Informationsprodukte in ihrer Lebenszeit eine Reihe von Phasen, die sich von der Erzeugung des IP über die Entwicklung bis zur Löschung des IP erstrecken.

Unternehmen sollten in jeder Phase des Lebenszyklus das Informationsprodukt durch ein umfassendes DIQ-Management optimieren.

Der ‚Information Product Manager‘ (IPM)

Unternehmen sollten einen IPM einsetzen, der eine ganzheitliche Sicht auf den DIQ-Managementprozess einnimmt. Die Aufgabe des IPM besteht in der Koordination und Steuerung des Informationsproduktionsprozesses und sollte durch einen integrierten, funktionsübergreifenden Managementansatz sichergestellt werden.

7.3.1.3. TDQM im ERP-Kontext

Ein Nachteil der TDQM ist, dass das verwendete Qualitätsmodell in sich geschlossen ist und die Erweiterung dieses Modells innerhalb der Methode nicht vorgesehen ist. Sämtliche Strategien, Techniken und Maßnahmen sind auf die Qualitätsdimensionen dieses Modells zugeschnitten. Dies trifft besonders auf die in der TDQM entwickelten Software zur Bewertung und Analyse der DIQ zu. Sollte das Qualitätsmodell nach

Wang und Strong in Dienstleistungsunternehmen nicht ausreichen, so müssen diese Unternehmen prüfen, inwiefern die TDQM angepasst und erweitert werden kann.

Grundsätzlich fokussiert sich die TDQM auf die prozessgetriebenen Strategien, um einen langanhaltenden Optimierungseffekt zu erzielen, jedoch werden auch datengetriebene Strategien angesprochen. Besonders im Rahmen von ERP-Systemen, die speziell auf der Geschäftsprozessintegration basieren, können prozessgetriebene Strategien optimal eingesetzt werden.

7.3.2. Total Information Quality Management (TIQM)

7.3.2.1. Phasen

Die TIQM-Methode besteht aus insgesamt sechs Prozessen, von denen fünf auf die Messung und Optimierung der DIQ ausgelegt sind. Der sechste Prozess stellt einen übergreifenden Prozess dar, der die Aktivitäten umfasst, um den kulturellen Wandel

130 „Define“, „Measure“, „Analyze“, „Improve“, „Control“.
132 Vgl. die Prozessschritte English (2004), S. 49.
innerhalb des Unternehmens umzusetzen. Abb. 7-2 verdeutlicht das Konzept und die Zusammenhänge der sechs Prozesse innerhalb des TIQM.

Abb. 7-2: Die sechs Prozesse des TIQM

Im 1. Prozessschritt wird die DIQ definiert. Die Definition sorgt für eine einheitliche Begriffsauffassung innerhalb des Unternehmens und legt die relevanten Qualitätsdimensionen sowie die entsprechenden Metriken zur Messung der DIQ fest. Auf dieser Basis kann anschließend die Messung der DIQ in Prozessschritt 2 erfolgen. Im 3. Prozessschritt werden die Kosten und Risiken einer mangelhaften DIQ gemessen. Im Anschluss daran erfolgt zum einen in Prozessschritt 4 die Bereinigung der Daten und zum anderen in Prozessschritt 5 die Optimierung der Geschäftsprozesse, die an der Verarbeitung der Daten und Informationen beteiligt sind.

7.3.2.2. Die zentralen Aspekte des TIQM

Die zentralen Aspekte des TIQM sind die Folgenden:

- Die TIQM stellt Prozesse und Techniken zur Bewertung, Optimierung und Kontrolle der Qualität der Daten und Informationen bereit.
- Der Fokus liegt auf den Kunden und deren Anforderungen und Bedürfnisse an die DIQ.

• Es wird die Prozessoptimierung und Prozessneugestaltung angestrebt, um eine langanhaltende Optimierung zu erreichen.
• Eine aktive Einbindung und Unterstützung des Top-Managements wird benötigt.
• Die TIQM unterstützt Unternehmen beim Wandel der Unternehmenskultur, damit Informationen und deren Management nicht nur als Nebenprodukte beziehungsweise beiläufige Aktivität, sondern als primäre Unternehmensressourcen betrachtet und entsprechend behandelt werden. Die Transformation der Unternehmenskultur baut auf der Überzeugung des Top-Managements auf.134 Ohne diese Überzeugung kann nicht sichergestellt werden, dass für die Einführung und Ausführung des TIQM ausreichend Ressourcen zur Verfügung gestellt werden.

7.3.3. AIMQ135

Das Vorgehen innerhalb dieser Methode gliedert sich in zwei aufeinander aufbauenden Phasen. In der ersten Phase erfolgt die Messung der DIQ durch die Befragung der Stakeholder mittels eines Fragenkatalogs, mit dem jede Qualitätsdimension durch mehrere Attribute auf einer Skala von 1-10 bewertet wird. Das Ergebnis dieser Phase ist eine subjektive Bewertung der DIQ hinsichtlich der

134 Vgl. English (2004), S. 48.
135 Vgl. Lee u. a. (2002).
138 Vgl. Lee u. a. (2002), S. 143.
relevanten Qualitätsdimensionen und stellt die Grundlage für die zweite Phase dar. In der zweiten Phase werden die Ergebnisse der ersten Phase analysiert und interpretiert, um somit potentielle Problembereiche zu identifizieren und Rückschlüsse auf anknüpfende Optimierungsmaßnahmen ziehen zu können.

Die Methode kann zur Identifikation und Priorisierung von Problembereichen und zur Messung der Effektivität der Optimierung über einen Zeitraum hinweg dienen.

Der Vorteil der AIMQ-Methode liegt in der anwendungsunabhängigen Anwendbarkeit. Die Befragung der Stakeholder kann auf Basis des Fragenkatalogs erfolgen, der in der Methode enthalten ist. Natürlich sollte Unternehmen, um ein präzises Ergebnis zu erhalten, den Kontext, auf den sich die Analyse bezieht, klar abgrenzen und für eine einheitliche Sicht auf die DIQ unter allen Beteiligten sorgen.

Der Nachteil liegt darin, dass sich die AIMQ, im Gegensatz zu den zuvor vorgestellten Methoden, nur auf die Messung und Bewertung der DIQ fokussiert und den Themenbereich der DIQ-Optimierung nur anspricht, jedoch keine Richtlinien, Strategien oder Techniken zur Ausführung bereitstellt. Folglich hilft die Methode in der Praxis nur bei der Bewertung und der anschließenden Analyse der DIQ und muss mit weiteren Methoden zur Ursachenanalyse und Optimierung gekoppelt werden.

7.3.3.1. AIMQ im ERP-Kontext
Die AIMQ ist nicht an einen speziellen Anwendungskontext gebunden und kann daher problemlos im Rahmen eines ERP-Systems eingesetzt werden.

Des Weiteren müssen Unternehmen die AIMQ in Verbindung mit anderen Methoden einsetzen, um die Ergebnisse der AIMQ effektiv in einen Optimierungsprozess umzusetzen und die DIQ zu verbessern.

7.3.4. Complete Data Quality Methodology (CDQM)

7.3.4.1. Phasen
Die CDQM besteht aus drei Hauptphasen: Zustandsanalyse, Bewertung und Auswahl des optimalen Optimierungsprozesses. \(^\text{143}\) In der ersten Phase werden die Beziehungen zwischen den betrieblichen Funktionsbereichen, Prozessen, Dienstleistungen und

\(^{142}\) Vgl. zu diesem Absatz Batini u. a. (2009), S. 48–49.

\(^{143}\) Vgl. zu diesem Absatz Batini, Scannapieco (2006), S. 181.
8. Fazit
Ziel der vorliegenden Arbeit war es, Methoden, die bei der Implementierung und dem Betrieb eines ERP-Systems in serviceorientierten Unternehmen zur Optimierung der DIQ eingesetzt werden können, zu identifizieren und diese auf ihre Anwendbarkeit in diesem Kontext zu bewerten. Hierzu wurden zunächst die Teilbereiche DIQ, ERP-Systeme und serviceorientierte Unternehmen getrennt betrachtet, um anschließend die Erkenntnisse aus diesen Teilbereichen zur Evaluation der Methoden einzusetzen.

Die Ausführungen dieser Arbeit haben gezeigt, dass Dienstleistungsunternehmen auf Methoden zur Herstellung und Gewährleistung der DIQ bei der Implementierung und dem Betrieb eines ERP-Systems zurückgreifen können. Obwohl die Methoden nicht für die Anwendung im ERP-Kontext entwickelt worden sind, können diese jedoch aufgrund ihrer universellen Anwendbarkeit auch in diesem Kontext eingesetzt werden.

Zwar wurde die Anwendbarkeit der Methoden in dieser Arbeit theoretisch bestätigt, jedoch zeigt sich erst bei einem praktischen Einsatz, ob die Methoden den Anforderungen in diesem speziellen Kontext gerecht werden.

Problematisch bei der Ausarbeitung war die Verfügbarkeit relevanter Literatur. Bisher haben sich nur wenige Forscher mit den Themengebieten 'Dienstleistungsunternehmen und DIQ' sowie 'Dienstleistungsunternehmen und ERP-

Um das Wissen im Bereich der DIQ und speziell in der hier behandelten Thematik zu erweitern, haben folgende Forschungsfragen eine besondere Relevanz:

- Für welche Teile des ERP-Systems hat die DIQ eine besondere Relevanz?
- Welche Faktoren beeinflussen die DIQ bei der Implementierung eines ERP-Systems?

Des Weiteren sollte anhand von Fallstudien untersucht werden, wie Dienstleistungsunternehmen Methoden zur Bewertung und Optimierung der DIQ einsetzen, um somit Rückschlüsse auf die Grenzen und Optimierungspotentiale der Methoden ziehen zu können. Mit diesen Erkenntnissen könnten die bestehenden Methoden angepasst und erweitert werden, um somit eine Methode zu entwickeln, die speziell auf den Einsatz in einer ERP-Umgebung zugeschnitten ist.

Abschließend kann festgehalten werden, dass das DIQ-Management bei der Implementierung und dem Betrieb eines ERP-Systems in Dienstleistungsunternehmen eine komplexe Aufgabe darstellt, Dienstleistungsunternehmen jedoch Methoden einsetzen können, mit denen die Herausforderungen gemeistert werden können.
Literaturverzeichnis

Ballou, Pazer (1985)

Batini, Scannapieco (2006)

Batini u. a. (2009)

Becker, Beverungen, Knackstedt (2010)

Berkley, Gupta (1995)

Botta-Genoulaz, Millet (2006)
DGIQ (o.J.)
Deutsche Gesellschaft für Informations- und Datenqualität e.V.:
Informationsqualität: 15 Dimensionen, 4 Kategorien.
http://88.198.68.171:8080/confluence/download/attachments/111411219/15.+I
Q+Dimensionen.pdf?version=1&modificationDate=1301666789000, Abruf am
29.08.2011

Dudenredaktion (1996)
Dudenredaktion (Hrsg.): Duden. Die deutsche Rechtschreibung. 21. Aufl.,
Mannheim u.a. 1996

English (2004)
Larry English: Six Sigma and Total Information Quality Management (TIQM).

Eppler, Wittig (2000)
Martin Eppler, Dörte Wittig: Conceptualizing Information Quality: A Review
of Information Quality Frameworks from the Last Ten Years. In: Barbara D.
Klein, Donald F. Rossin (Hrsg.): Proceedings of the 5th International
Conference on Information Quality (ICIQ 2000), October 20-22, 2000,
Cambridge, MA. Cambridge, MA, USA 2000, S. 83-96

Haug, Arlbjorn, Pedersen (2009)
Anders Haug, Jan Arlbjorn, Anne Pedersen: A classification model of ERP
system data quality. In: Industrial Management & Data Systems. Nr. 8, Jg. 109,
2009, S. 1053-1068

Kuan-Tsae Huang, Yang Lee, Richard Wang: Quality information and

Karmarkar, Pitbladdo (1995)

Kellogg, Nie (1995)

Knolmayer, Röthlin (2006)

Lee u. a. (2002)

Lee u. a. (2004)
Madnick, Zhu (2006)
Stuart Madnick, Hongwei Zhu: Improving data quality through effective use of
data semantics. In: Data & Knowledge Engineering. Nr. 2, Jg. 59, 2006, S. 460-475

Madnick u. a. (2009)
Stuart Madnick, Richard Wang, Yang Lee, Hongwei Zhu: Overview and
Framework for Data and Information Quality Research. In: Journal of Data and
Information Quality. Nr. 1, Jg. 1, 2009, S. 1-22

Meda, Sen, Bagchi (2010)
Hema S. Meda, Anup Kumar Sen, Amitava Bagchi: On Detecting Data Flow
Errors in Workflows. In: Journal of Data and Information Quality. Nr. 1, Jg. 2,
2010, S. 1-31

Park, Kusiak (2005)
K. Park, A. Kusiak: Enterprise resource planning (ERP) operations support
system for maintaining process integration. In: International Journal of
Production Research. Nr. 19, Jg. 43, 2005, S. 3959-3982

Leo Pipino, Yang Lee, Richard Wang: Data quality assessment. In:
Communications of the ACM. Nr. 4, Jg. 45, 2002, S. 211-218

Redman (1998)
Thomas Redman: The Impact of Poor Data Quality on the Typical Enterprise.
In: Communications of the ACM. Nr. 2, Jg. 41, 1998, S. 79-82

Kovac, Lee, Pipino (1997)
Rita Kovac, Yang Lee, Leo Pipino: Total Data Quality Management: The Case
of IRI. In: Diane M. Strong, Beverley K. Kahn (Hrsg.): Proceedings of the 2nd
International Conference on Information Quality (ICIQ 1997), October 24-26,

Statistisches Bundesamt Deutschland (2009)

Strong, Lee, Wang (1997a)

Strong, Lee, Wang (1997b)

Diane Strong, Olga Volkoff: A roadmap for enterprise system implementation. In: Computer. Nr. 6, Jg. 37, 2004, S. 22-29

Strong, Volkoff (2005)

Sun u. a. (2006)
Tayi, Ballou (1998)
Giri Tayi, Donald Ballou: Examining data quality. In: Communications of the ACM. Nr. 2, Jg. 41, 1998, S. 54-57

Umar u. a. (1999)

Vayghan u. a. (2007)

Volkoff, Strong, Elmes (2005)

Vosburg, Kumar (2001)

Wang, Strong (1996)
Wang (1998)

Wang u. a. (1998)

Wixom, Todd (2005)

Xu u. a. (2002)
 Hongjiang Xu, Jeretta Nord, Noel Brown, G. Nord: Data quality issues in implementing an ERP. In: Industrial Management & Data Systems. Nr. 1, Jg. 102, 2002, S. 47-58

Zack (1999)